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A MIXED GALERKIN METHOD FOR COMPUTING THE FLOW

BETWEEN ECCENTRIC ROTATING CYLINDERS
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SUMMARY

A mixed Galerkin technique with B-spline basis functions is presented to compute two-dimensional
incompressible ¯ow in terms of the primitive variable formulation. To circumvent the Babuska±Brezzi stability
criterion, the arti®cial compressibility formulation of the equation of mass conservation is employed. As a result,
the diagonal components of the matrix form in the governing equations are not singular. The B-spline basis is
used because it is superior to other splines in providing computer solutions to ¯uid ¯ow problems. One of the
advantages of the B-spline basis is that it has excellent approximation properties. Numerical examples of
applications of the mixed formulation are presented to demonstrate the convergence characteristics and accuracy
of the present formulation. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A mixed form is recognized as a successful formulation for interpolation of velocity and pressure.

Even though its application in ¯uid problems is rather recent, it shows many advantages over the

®nite difference method. Babuska1 provided a mathematical framework for the behaviour of a mixed

method, but this formulation gave poor accuracy when applied to a second-order elliptic equation

with large coef®cients of the ®rst-order terms. To overcome these kinds of dif®culties, Abrahamsson

et al.2 gave a theoretical treatment. Based on Abrahamsson's theory, a one-dimensional problem was

solved by Christie et al.3 this was extended to two dimensions by Heinrich et al.4 Keller et al.5

signi®cantly advanced the development of the upwind Petrov±Galerkin method, which considerably

reduces the amount of numerical diffusion. Hughes et al.6 published a new formulation with better

stability properties than the classical Galerkin method. They applied an ingenious weighting

procedure that results in a stable system of the Petrov±Galerkin formulation. Recently, Sampaio7

developed the least squares Galerkin formulation for the transient equations. Zienkiewicz and Wu8

noted that the general stabilized forms lead to non-symmetric steady state equations.

In this paper we shall solve the steady state exact governing equations in mixed formulation

through the use of the Galerkin method. However, direct discretization of the steady state Navier±

Stokes problem would lead to a singular system. To circumvent this problem, we work with the

arti®cial compressibility formulation of the conservation of mass, adjoining its time-asymptotic form

to the steady state Navier±Stokes equations. The arti®cial compressibility formulation is used with
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the B-spline basis. Panton and Sallee9 gave a good comparison among three types of splines. The

resulting algebraic equations are solved by employing the Gauss±Newton method.10

2. MATHEMATICAL ANALYSIS

The physical situation considered is that of steady laminar ¯ow between two cylinders. The

thermodynamical properties of the ¯uid are assumed constant. The non-dimensional governing

equations of linear momentum and mass can be written as
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where ui is the two-dimensional velocity ®eld, tij is the viscous stress tensor and p is the pressure.

In the classical mixed formulation the structure of the discretized equation is
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In equation (3) the system is singular owing to the zero diagonal component, which entails special

treatment of the system. To avoid the dif®culties posed by the classical form, the arti®cial

compressibility formulation of the equation of continuity is used. Although our professed interest lies

in the steady state problem, we write the conservation equations for momentum and mass in their

unsteady (non-dimensional) forms as

@ui

@t
� uj

@ui

@xj

� @p
@xi

ÿ @tij

@xj

� 0; �4�

1

c2

@p

@t
� @ui

@xi

� 0; �5�

where c is the speed of sound.

For the conservation of mass, we time-discretize equation (5) as
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time level the equation of momentum becomes
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On substituting equation (7) into equation (6), we obtain
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In equations (7) and (8) the steady state is characterized by @u=@t � 0 and @v=@t � 0 in equations

(4) and (5) and by p�n�1� � p�n� in equation (8). By the standard Galerkin procedure we solve the

following system of equations:
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Here d is a suitably small number. Note that in the limit d! 0 we recover the steady Navier±Stokes

problem. The dependence of the solution on the value of d, typically of O�10ÿ9� and leading to RMS

error in mass conservation of O�10ÿ8�, is discussed by Zienkiewicz and Wu8 for theoretical

convergence studies.

We introduce interpolation functions Nui
and Np such that

ui � Nui;i
ui; �11�

p � Np;i p; �12�
where Nui

and Np are the velocity and pressure interpolation functions respectively.

In equations (11) and (12) the B-spline basis is used as a weight factor. We partition the interval

[0, 1] as

p : 0 � z1 < z2 < � � � < zl < zl�1 � 1;

where zi are the breakpoints. Pk;p is the linear space and can be expressed as

Pk;p � f f �z� : f �z� � pi�z� if z 2 �zi; zi�1�; 14 i4 lg: �13�
For each subinterval �zi; zi�1�;Pk;p has a maximum order of k. Since there are l subintervals, the

dimension of Pk;p is kl. At each of the interval midpoints zi; 24 i4 l, we introduce Sk;p;n, a subspace

of pk;p. Here n � fnigli�2 is the smoothing index of the subspace Sk;p;n. Now we construct the basis of

Sk;p;n which has local support. To obtain this kind of basis, we generate the recurrence relation of the

B-spline basis as11
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In equation (14), t � ftgn�k
1 is a non-decreasing sequence as follows:

(i) t1 4 t2 4 � � � 4 tk 4 x1 and xi�1 4 tl�1 4 � � � 4 tn�k

(ii) zi occurs exactly k ÿ ni times in t; 24 i4 l.

The B-spline indicated above have the properties

Bi�z�5 0; 14 i4N ; z 2 �z1; zl�1�;PN
i�1

Bi�z� � 1; z 2 �z1; zl�1�;
�15�
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and the relevant relations

B1�z1� � Bn�zl�1� � 1; Bj�z1� � 0; j > 1; Bj�zl�1� � 0; j < n;

Bj�z� � 0; z =2 �tj; tj�k �; Bj�z�5 0; z 2 �0; 1�; B01�zi� � B02�zi� � 0;

B0j�z1� � 0; j > 2; B0nÿ1�zl�1� � B0n�zl�1� � 0; B0j�zl�1� � 0; j < nÿ 1:
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In the present calculations we employ a cubic B-spline basis, i.e. order k � 4, and a knot sequence

z1 � t1 � t2 � t3 � t4 ; z2 � t5; � � � zl � tn; zl�1 � tn�1 � � � � � tn�4:

We introduce two independent basis functions to satisfy the solution of the ¯ow between two

cylinders fAi�x� : 14 i4Nxg is the regular set of B-splines in the x-direction and fbj�y� : 14 j 4Nyg
is the periodic B-spline basis in the y-direction. The interpretation of the regular B-spline is

mentioned above and the requirement for the solution of the periodic B-spline is11
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0 INyÿ6 0
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ÿc ÿ1 0

1 0 0
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where c � 2B002n�0�=B003�0� and I3 and INyÿ6 are unit matrices. The new base vectors fbigNyÿ3

i�1 are given

by

b � FB � �b1; b2; . . . ; bNyÿ3�T; �18�
where B � �B1;B2; . . . ;BNyÿ3�T.

Figure 1 shows the regular B-spline basis functions and Figure 2 shows the periodic B-spline basis

functions.

The non-linear algebraic system representing the governing equations (9) and (10) can be

expressed as

G�u; l� � 0: �19�

Figure 1. Regular B-spline basis functions, k � 3;N � 5
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Here G: U � L � R00 ! Rm, dim U � m, dim L � nÿ m; u 2 U is the vector of unknown variables

and l 2 L denotes the parameters. To get a solution, we vary one parameter while ®xing the other

parameters. Therefore nÿ m � 1 and the regular manifold of equation (19) is the path. For the

iterative calculation of equation (19) the Gauss±Newton method is employed.

3. NUMERICAL RESULTS

In this section, two numerical examples are presented to demonstrate the convergence and accuracy

characteristics of the mixed Galerkin formulation with B-spline basis functions. For each of the two

examples, comparisons with analytical and numerical results available in the literature are given.

Before source code compilation, Galerkin coef®cients are ®rst implemented. Howle12 mentioned two

areas of savings for this procedure. First, the number of ¯oating point operations per iteration is

signi®cantly reduced while the number of iterations required for convergence is unchanged. Second,

it is no longer required to store the inner product coef®cient. All numerical computations were

performed on VAX8650 using double-precision accuracy. The calculations required 3±30 min CPU

time for spline numbers N � 12; 14 and 16 and took three to seven iterations to converge.

3.1. Viscous ¯ow between concentric rotating cylinders

To test the correctness of the solution, it was compared with the analytical solution for a simple

case. In this case the outer cylinder is stationary while the inner cylinder rotates with angular velocity

o. The ¯ow is one-dimensional and the results can be compared with the analytical solution for the

tangential velocity and pressure ®eld. For values of the Reynolds number from Re � 1 to 1000,

Krakow13 presented this problem. He obtained impressive accuracy and convergence compared with

previous papers. His results, however, cannot be compared with analytical solutions in this analysis,

because he eliminated the pressure term by mathematical manipulation. Here, for comparison,14 the

Figure 2. Periodic B-spline basis functions, k � 3;N � 5
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full Navier±Stokes equations in primitive variable formulation are used. After applying the boundary

conditions in Figure 3, we have B-spline expansions

u�x; y� �PNx

i�2

PNyÿ3

j�1

uijAi�x�bj�y�; �20�

v�x; y� � v1A1�x� �
PNx

i�2

PNyÿ3

j�1

vijAi�x�bj�y�; �21�

p�x; y� �PNx

i�1

PNyÿ3

j�1

pijAi�x�bj�y�: �22�

We substitute expansions (20)±(22) into the discretized governing equations to obtain solutions

using the Galerkin method with the spline basis A
 b. Although the analytical solution is

independent of the Reynolds number, the concentric rotating ¯ow is calculated at Re � 50. Figure 4

Figure 3. Schematic diagram of concentric rotating cylinders

Figure 4. Velocity and pressure distribution along radial direction for y � 87�5� and Re � 50
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shows the velocity and pressure distribution along the diagonal direction for y � 87�5�. We

performed the calculation with different numbers of B-splines. The results show very good agreement

with the analytical solution. The plots of the two results in Figure 4 are hardly distinguishable. Figure

5 shows the convergence of the solution procedure. It is worth noting that convergence has been

reached within ®ve iterations.

Figure 5. Convergence of solution

Figure 6. Comparison of numerical solutions at different eccentricity ratios and Reynolds numbers
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3.2. Viscous ¯ow between eccentric rotating cylinders

The ¯ow between eccentric rotating cylinders is presented in this subsection. The two-dimensional

steady state problem with constant viscosity is considered to compare with published results. Since

our present numerical method is independent of the method utilized by Dai et al.,15 it can be used to

check the two solutions against one another. Numerical results for the problem are given in Figure 6,

where the dimensionless force capacity f is given by

f � � f 2
x � f 2

y �1=2; �23�
with fx �

� y
0

p sin y dy and fy � ÿ
� y

0
p cos y dy.

These results are compared with those of Dai et al.15 and with the small-perturbation solutions of

DiPrima and Stuart.16 After examining Figure 6, we have concluded that the agreement among the

three sets of data is very satisfactory. It is also noted that although DiPrima and Stuart assumed small

eccentricity (e) and small Reynolds number in their analysis, their results show unexpectedly good

Figure 7. Streamline patterns for Stokes ¯ow: (a) e � 0�3; (b) e � 0�35; (c) e � 0�5; (d) e � 0�8
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agreement with the two sets of numerical results even at e � 0�7 over the whole range of laminar

Reynolds numbers. Figure 7 shows the streamlines for a rotating inner and a stationary outer cylinder

at various values of eccentricity. The results are the solution of creeping ¯ow. The recirculation ¯ow

is symmetric relative to the lines of centres. The points of separation and reattachment show very

good agreement with the conclusions of San Andres and Szeri.17

4. CONCLUSIONS

In this paper we presented the solution of the Navier±Stokes equations in primitive variable form by a

mixed Galerkin formulation employing B-spline basis functions to compute two-dimensional ¯ow.

The formulation circumvents restrictions of the Babuska±Brezzi condition. In particular, the B-spline

basis, which is superior to other splines in providing computer solutions to ¯uid ¯ow problems, is

accommodated. One of the advantages of the B-spline basis is that it has excellent approximation

properties.

For one-dimensional problem the formulation that is called a mixed Galerkin formulation gives

excellent agreement. For a two-dimensional problem it is noted that the effect of ¯uid inertia has been

included for comparison of approximate analyses of two rotating cylinders, although inertia effects

seem to be less important there. According to the tests, the solution of the procedure presented in this

paper is reasonable without any mathematical manipulation of the pressure. We observed that in both

cases the solution converges very fast.
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